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. - =  SUMMARY 
. .  

The method of  Lagrange multipliers 

.I 

is  used t o  take  account of  the I 

dynam€c effects  of the  constraints a t  the wing t ips  when two  ident ical  
airplanes are  coupled t o  tlie' w i n g  tips of a "mother" airplane. The 
resulting  equations of motion of  th is  symmetrical configuration  &re 
derived f o r  one, two, o r  three degrees of  rotational freedom at each 
jo in t  . ." . . 

The effects  of aercdynamic interference  are  ignored  in  the origi- 
nal derivation. It' is then sham how the' aeroaynaraic interference terms 
may be included when they  are known. As an e-le, the inter'erence 
terms ar is ing from variations of. the rolling veloci t ies  and aagles of  
attack of the  individual  airplanes are treated. .e 

r' 

IXTRODUCTION 
w 

Wwg--tip t o  wing-tip  coupling of airplanes 1s being investigated 8 s  
a means f o r .  carrying  fighter  protection on bomber missions or f o r - i n -  
flight refueling. Because of the  increase fn effect ive  aspect   ra t io   in  
this  configuration,  the  outer "psrasite" airplanes can probably be 
carried more eff ic ient ly   than in any other manner (references 1 t o  4). 
The metha2 of  tandem coupling does not have this advantage of increased 
aspect r a t i o  and has, Fn addition, proven to,be  ineffic-ient because the 
rear  airplane must f ly  in the downwash of  the fron€  airplane. 

The s t ructural  loads on the wings fn the wing-tip-cQu@ed configu- 

In this paper it is  shown how the method of LagFange 'multfpliers may be 

P 
. -  ration may be mintmized by allowing  rotational f r d o n i  a t   t he   j o in t s .  

2 used t o  analyze  the aynamic effects  of the  constraints a t  +&e wing t ips .  
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The  reaulting  equations  of  motion  for small disturbance8 of a symmetrical 
configuration  from  its  trim  condition  are  derived  for  one,  two,  or  three .L 

degrees  of  rotational  freedom  at  each  joint.  Because of the  symmetry of 
the  coniiguration,  the  equations may be  separated  into  independent 
lateral and longitudinal  modes. 

The  primary  purpose  of  this  investigation is to  analyze  the  purely 
dpamic effecta  of  wing-tip  coupling;  therefore  the  equations of motion 
are  flrst  derived  without  consldering  the aerodynaslic interference 
between  the  airplanes. Such interference  effects,  however,  m8y.be 
important.  Therefore, the-types of aerodynamic  interference  terms 
which  may  occur  are  discussed  from a general  point  of view, and  it  is 
shown how these  terms,  when  they  are known, can be included  in  the  eqna- 
tions  of  motion. As an example,  it is shown how the  interference  terms 
arising  from  variations of the  rolling  velocities and angles of attack 
of the  individual  airplanes m y  be  included in the  equations  of  motion. 
These-terms are  believed to be  the  most  important  interference  effects 
in  this  type  of-coupling. 

The  effects of aeroelasticity are ignored  in  this  discussion. 

SYMBOLS 

x, y, z conventional  atability  axes  for  describing  airplane 
motions;  components of aerodynamic  'forces  along  theae 
axes;  also  components of fixed  poeitions of coupling 
joints  in  these  axes 

VO steady-state  velocity,  taken  along  the  steady-state 
X-axis 

. .  
t time 

x, Yt = components of disturbance  displacement of airplane along 

U Y  v, w components of disturbance  translational'  velocity  along 

X-, Y-, and. Z-axes,  reepectively 

X-, Y-, and  Z-axes,  respectively  (dx/dt,  ..dy/dt, dz/dt 
taken in stability ges) . 

ut,  P, a nodimensional forward  velocity,  eideslip  angle, and 

$3 8, 4f components of disturbance  rotation  about X-, Y-, and Z- 

angle of  attack,  respectively . 

axes,  respectively 

I 

I 

c 

. 
I 
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c 

% an arbitrary  factor  (Lagrange's  "undetermined multipliers") 
8 indicates a small virtual increment 

i index  denoting  degrees of freedom of a mechanical system 

qi  generalized  coordinates  used  to  describe a mechanical 
system;  also  used, in particul&r, to  denote  degrees  of 
freedom of the  three  airplanes 

Fi  generalized  applied  force in airplane  degree of freedom 

Ei sum of  the  inertial,  weight, and aerodynamic  forces in 
. unconstrained  equations of motion of an airplane 

I 

m r@aS s 

w 'weight 

I X ' Y  Iy, Iz moments of inertia of airplane  about  the X-, Y-, and Z- I 

axes,  respectively 
I 

product of inertia  of  airplane 

7 

L' 

flight-path  angle 

lift  force 

b *g 

C wing chord 

S wing area. 

P air density 

Fx,. Fy, Fz components of applied  forces along stability  axes 

L, M, N components  of  applied moments about X-, Y-, and Z-axes, 
respectively; also components of aerodynamic  moments 

d angle  of  fighter  deflection  about  hinge, when hinge-type 
coupling is used - 
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70 angle  between  hinge  axis  and  steady-state  X-axis w h e n '  

hinge  axis  is  parallel ta steady-state  XZ-plane L .  

Y 2 Y  TI angles  between hinge.axie and  the  steady-state X-, Y-, 3 and Z-axes,  respectively, when  the  hinge is arbitrarily 
oriented 

- .  

Sf A3 = - 
S 

. I  

I 
I 
I 

I 

B3 = sf 

B 5 - c  . 
-9 

. .  - 
I 

I 
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Ky2, %2 square of the nondimensional radii of &tian  in  r o l l ,  
i -  

nondimensional product-of-inertia  parameter (3) 

I 

I 

= cos yo ss 

cx ' . longitudinal-force  coefficient 

CY lateral-force  coefficient (5) - I 
I 

i .cz . normal-force coefficient 

C 2  rolling-moment coefficient (&) 
Cm pitching-moment' coefficient ( 3  . 

yawing-moment coefficient . .  
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Whenever 19, U t y  Vt B y  w, k, a, 3, 6 ,  and $ are used as sub- 

aY 
3V scripts,  a derivative is indicated. For example, Yv = - 

Note: Unconventional stabil i ty  derivative8 caused by aerodynamic inter-  ? 

ference are diatinguished by parentheses; namely, 

(Z), , (Z)af  aerodynamic Z-force on  bomber due to   un i t   f i gh te r  angle of  L 

(L)*, (L)a f  aerodynamic rol l ing m&t on bomber due t o   u n i t  fighter 

f attack and. unit fighter rolling  velocity,  respectively 

angle of 'attack and unit fighter  roll ing  velocity,  
respectively 

(Zf),, (Zf)$ aerodynamic Z-force on fighter due to   un i t  bomber angle 
of attack and unit-bomber rolling velocity,  respectively 

(Lf),. [Lf) . aerdynamic  rolling moment on the f ighter  due t o   u n i t  
8 bomber angle of at tack and unit bomber rolling  velocity, 

respectively 

("1 f 
aerdynamic  Z-force on fighter due to   un i t   ro l l ing  

velocity of same fighter.--- 
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fighter die t o  unit  angle 

Subscripts: 

0 

f 

i 

k 

aerodynamic rol l ing mament on 
of 'attack of same fighter 

i n i t i a l  conditions 

f ighter  parameters i 

parametera of . l e f t  and right fighters,  respectively 

index  denoting  the  degrees of freedom of a mechanical 
. .  

sys tern 
1- 

index  denoting a particular  equqtion of condition con- 
necting  the  degrees of  freedom, o r  the corresponding 
undetermined multiplfer 

symmetrical and antisymmetrical Campanents of combined 
f ighter  motion, respectively  (see  equations ( g ) ,  (IO), 
and. (16)) 

i 

B o k :  N o  subscript is  used on bomber parameters. 

PRELIMINARY DISCUSSION 

The configuration t o  be considered  consists of  three airplanes 
coupled wfng t i p  t o  wing tip. The two outer  airplanes are assumed t o  
be exactly  alike.  Since  the  central  airplane is carrying  the two outer 
airplanes  along as parasites,  these  airplanes will probably be smaller 
-.the central  airplane. For convenience, the central  airplane will 
he referred t o  as a bomber  ftnd the  outer  airplanes will be referred t o  
as  fighters,  although  the  analysis will actually be quite  general and 
the only- rea l   res t r ic t ion  will be that the  outer  airplanes,  includhg ' 

their coupling t o  the central  airpl-e, be exactly  alfke. 

The ord inary equations of motion for  the  three  ailplanes  flying 
independently will be 'modified by the  interactions between the air- 
planes. These interactions are of three types:  the dynamic interactions 
ar is ing from the coupling at the wing t ips ,   the  aercdynamic interactions 
ar is ing from the  interference  effects on the air  flow over the airplanes 
due t o   t h e i r  proximity, and the  elastic  interactions.  In the  present 
case  the  airplanes are assumed t o  be rigid;   therefore,   elastic  effects . 

mag be  ignored. 
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The primary  purpose of the  present  paper i s  t o  take account of  the 
dynamic effects  of the  constraints at-the wing t i p s  and s e t  up a method 
f o r  obtaining the equations of motion of  the  entire  configuration  for 
small disturbances from a t r i m  condition. This method will first be 
developed without  considering  the aerodynamic interference  effects. 
The equations so derived would  be correct  for  airplanes coupled together 
with a large enough  gap  between the wing t i p s  so that aerdynamic  inter- 
ference  could be ignored.  Later, it will be shown  how the  effects of 
aerodynamic in€erference may be considered  without any essent ia l  m o d i -  
f icat ion of the method of'obtaining  the  equations of motion of the 
configuration. 

DERIVATION OF EQUATIONS OF MOTION 

W ~ O ~  AERODYNAMIC INTERFERENCE 
I 

In order to  describe the motion of three independent airplanes, 
eighteen  degrees of freedom.consisting of the.  ordinary s ix  degrees of 
freedom for  each airplane  must'be  considered. If the wing t i p s   a r e  
assumed t o  be connected, then  the  translational motion of adjacent wing 
t i p s  must be the same. The translational motion of the wing t i p s  a t '  
each point of connection i s  expressed i n  terms of the degrees  of  free- 
dom of the individual  airplanes. Then the  expressions  for the trans- 
latfonal  velocit ies of adjacent- wing t i p s  may be se t  eqe1  t o  each 
other. Thus, for  each  connection, three  equations  are  obtained  relating, 
the  degrees  of-freedw of the  airplanes,  since one equation i s  obtained 
for  each component-.of the  translational  velocity'of  the wing t ips .  There 
are, therefpre, s ix  equations of condition (or constraint)  connecting 
the  eighteen  degrees of freedom fo r  the case of complete rotational 
freedom a t  each  connection. The equations  of motion of the t o t a l  syetem, b 

taking account  of the effects  of-the  constraints,  will be derived  using 
Lagrange's method o f  FdetermFned multipliers  (references 5 and 6). 

. 

The equations of motion fo r  each  independent airplane are referred 
t o   s t a b i l i t y  axes  fixed  in  the.separate  airplanes  (see fig.  1). For 
the present  discussion it will be Bssumed t h a t   i n  the equilibrium con- 
ditlon  of.the  configuration  the fighters may be trimmed.so that all s i x  
wlng , t ips   l i e  on a straight line;  then in the steady state all three 
sets  of airplane  axes may be taken  parallel. For -each airplane,  the 
components  of the wing-tip-. velocities  along  axes  fixed  in space para l le l  
to  the  steady-state axes may now be wr i t ten   in  term of airplane  degrees 
of  freedom as follows: 

i 

h 



2 
P 

L 

MCA RM ~ 5 1 ~ 1 2  

- 'v + volP+xi-  $ 

w - V08 + Y$ - xi  (IC) 

where u, V, w and 8, '8 ,  are  the  disturbance t r a n s l a t i m l  and. 
rotat ional   veloci t ies  of the  airpliane  axes, Vo is the  steady-state ' 

veiocity  along  the X-axis, and X, Y, and Z - are  the fixed positions 
of the wing tip  in  airplane  coordinates. ' 

* .  

The subscript f will be used t o  indicate  the  f ighter parameters 
common t o  both  fighters. The f ighter  t o  t he   l e f t  of  the bomber w i l l  be 
indicated by using the  subscript 1 on i t s  variables and t he   f i gh te r   t o  
the right of the bomber will be indicated by using  the  subscript 2. No 
subscript will be used f o r  the boniber. The constraining  conditions  are 
that   the   veloci ty  of the right wing t i p  of the left  f ighter  must e q w l  
the  velocity of t he   l e f t  wing t i p  of the bomber and the  velo.city of  the 
l e f t  wing t i p  of the right f ighter  must equal  the  velocity o.f the  r ight 
wing t i p  of the bomber. For example, the two equations givFng the 
X-velocities of the  points of connection are, from expression (la), 

V o + u + Z i + b $  = vo + "1 + Zfi1 - bf i 

2 2 *l 

. Solving  these 
translational 

. 

v o + u + z e  - 

equations and 

b $ = V 0 + u 2 + Z i  +-Jr2 bf - 2 f 2  2 

the similar equations of .condition  for  the 
velocit ies of the  fighters  gives 

u1 = u +.zi + 22 i - ZfBl b 
2 

v1 = v + voJr + xllr - zp - v0q1 - Xf*l 

i 

c 
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v2 = v + V0$ + x$ - - vov2 - q;k2 + Z R 2  (2.5) 

These  equations  are  the  equations  of  condition  imposed by the  constraints 
&en the axes of all the  airplanes  are  parallel.  Inasmuch  as small angles 
occur  between  the  sets  of  axes  during  the  motion,  equations (2) should be 
modified  to be exact  by  introducing  the  proper  trigonometric  functions of 
these  variable  angles;  However,  it  is  apparent  that  equations (2) remain 
valid  to  first-order  accuracy a s  long &B the  disturbances  are small. 
Therefore,  for  the  purposes  of  stability  analysis  these  equations  are 
valid  equations  of  condition if the  airplanes  have  been  alined  as  previ- 
ously described  in  the  trim  condition.  Actually,  other  possible  trim 
conditions  exist in which  there  may  be steady-state-agles between  the 
bomber  and  fighter;  therefore,  the  bomber asd fighter'axes  are  inclined 
at an angle  to  each  other. In such  casea  the  proper  trigonometric  func- 
tions of the  steady-state  anglea  must be introduced i n to  the  equations 
of condition.  .'SFnce  the  presence  of  these  constant  factors  does  not 
fundamentally  alter  the  method of obtaining  the  equations  of  motion, the 
discussion of such  trim  conditions  will be deferred  until  later. 

Application of Lagrange's  Method of Undetermined  Multipliers  to 

the Case of Complete  Rotational  Freedom  of  the W i n g  Tips 

Lagrangeta  method of undetermined  multipliers  provides a convenient 
means of taking-account of-the constraints in the  present  problem. This 
method  is  based on d'Alembert's  Principle,  which  is an extension of the 
principle of virtual  work  to  dynamics. For the  aimple  case  of  the  motion 
of a set of n particles, dlAlembertls Principle  states t@t, for 
"virtual"  displacements  Sqi, 

where is the mass of m e  of the  particles,  qi is the  displacement 
in  the  ith  degree  of  freedom,'and Qi is  the  corresponding  applied 
force. In the  present  application,  let Ei indicate  the  sum of the 
inertial, aerdynmic, and  weight-  terms in the  unconstrained  equation 
of  motion  correaponding  to a given  degree  of  freedom  of &11 airplane, 
1e.t Fi indicate  any  additional  applied  force in that  degree  of  freedom, 

. 

L 

I 
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and l e t  qi indicate 

- 11 

the  displacement i n  tha t  degree of freedom.  Then . dtAlembert's  Principle  takes  the f o m  

Here 6y E 6q1, S$ E 892, and s o  for th  f o r  a l l  eighteen  degrees of 

freedom; and the factor  of each 6% i s  the  eqmtion of motion in   the  
corresponding  degree of freedom, for  the  unconstrained  airplanes. 

Lagrange's method then  requires  the  condition8  relating  the v i r tua l  
displacements in the  various  degrees of  freedom. These equations of 
condition can be obtained from equations (2). For example, .if qua- 
t i on  (2.2) i s  multiplied by 6t, - 

By1 = 6y + v&# 6 t  + x S$ - z sg - vo9; 6 t  - xf + Zf 6 4  

Since  the  constraint i s  geometrical,. 6 t  may be taken as  zero  .(see 
reference 6, p. 58). With 6 t  = 0, each of the  six  equations of condi- 

eter Xk (k = 1, 2, . . . 6) and the  following  equations result: 
4 tion  obtained from equations (2) is  multiplied by a n .  arb i t ra ry  param- 

I 

I 

! 

. r  
i 

I 

I 

I 

! 

I 

I 

! 

! 
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(4.4) 

I 

Since  these  equattons of conatmint-are  integrable, 'six of the 
eighteen  degrees of  freedom can be eliminated by using them (refer- 
ence 6).  It might be noted that  the  exact  equations of  constraint, 
including  the  trigonometric RulctFons of the.variable  deflection  angles, 
would not only lead to  nonlinear-  equations of-motion but-would also iead 
t o  nonintegrable  cystraints.   In-this Case  none of the  variables  could 
be eliminated and the problem would be extrremely complicated. 

Equations (4) are now added t o  equation (3),  and the  factors of 
, each 8qi.  are  collected. The arbi t rary & may be  chosen-  such that 

s i x  of these factors should  vanish,  since  there  are six parameters Xk. 
Since  there  are  twelve independent var iables   in   the system, the  vari- 
ables  associated  with the remaining'twelve mctors  may be considered t o  * 

be independent and the associated  displacements 6qi are  therefore 
arbitrary.  Since  the  displacements Sqi are  arbitrary,  the factors of 
the*remaining  twelve  displacements 8% must- also vanish to   s a t i s fy   t he  

equation  obtained by adding  equations (4) t o  equation ( 3 ) .  Thus the 
parameters & may be chosen such that  the  -factor . o f  each of the 
eighteen  displacements 6qi  must vanish and eighteen  equations are 
obtained.  For exampl?, the  factor of 6y from equation (3) is  

. (-Fy + mb - q v  + mVo@ - sin 70 - @ cos yo) ,  whereas from the 8um of . 

factors  equal to '  zero  yields  the f'irst equation. The eighteen  equations 
- equations (4) the  factor .of . 6y is  k2 + X5. Setting  the sum of these 

. obtained i n   t h i s  fashion  are  the  following: 

- yvv + mvo$ - QW sin 70 - ptw cos 70 + x2 + 5 = F~ 

. 
C 

! 
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- .  

1-3 

-$v + Iz$ - N$r - I d  N' # + n(Xl - X4)  .+ X(X2 + X5) = N 
.. .* . b  

.. d (5.2) I 

, .  

.. 
-&v - Ixzy - Lj i ;  + I& - Lp - zp ,  + XS) + b z("6 - x3) = L (5.3) I 

I 

L 

m; - q u  - ~w + 8~ COB yo  + x1 + x4 = F~ (5.4) 

c 

i 

i -  

' !  
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"P;~ - Y v2 + mpo+2 - q2wr sin yo  - $ 2 ~ f  cos yo - x5 = F (5.13) 
"f y2 

mfu2 - qfu2 - GfW2 + 82Wf cos To - x4 = 
Fx2 (5.16) 

In these  equations  the  terma in the  undetermined  parameters  represent 
the  constraining  forces  arising from,the wing-tip  connections.  Equa- 
tions (4) and ( 5 )  now give  twenty-four  equations in the  twenty-four 
unknowns consisting of the  eighteen.degree,s  of  freedom  and  the  six  param= 
eters Ak. Moreover,  since  the  constraints  given by equations (4) are 
integrable,  the  system can be  completely  described by only  twelve  inde- 
pendent  degrees of freedom. The twelve independent  equations of motion 
can  be  obtained  by  first  solving for the  constraint  parameters Lk and 
then  substituting  these  values  into any twelve  of  equations ( 5 ) .  Any 
six of the  original  degrees  of  freedom may now be eliminated by using 
the  constraint  conditions  in  the  convenient form given  by  equations (2). 

The most  convenient-method  of  carrying  out  this  process  is  to 
obtain  twelve  linearly  independent  combinations  of  equations (5) which 
eliminate  the  parameters &. This may  be  done  in many equivalent ways, 

! 

. b  

I 

I 



but  the.  following  twelve  linearly  independent  combinations  seem  to be 
the  simplest: 

Side-force equation: (5.1) + ( 5 -  7) + (5.'13) (6.1) 

Left-fighter r o l l  equation: (5.9) + q ( 7 7 ) -  - 2 (5.n) 

Left-fighter pitch equstion: (5.12) - zf(5.10) + 5(5.11) (6.9) 

Right-fighter yaw equation: ' (5.14) - $ (5.16) - +(5.13) 
Right-fighter r o l l  equation: (5.15) + zf(5.13) + $ (5.17) ( 6.11) 

Right-fighter  pitch equatiori: (5.18) - zf(5.16) + xf(5.17) ' (6.12) 

bf , (6.8) 

b 
(6.10) 

b 

!- 

- 
' The six translational  degrees  of  freedom of the  fighters may be elhi- 
nated  from  equations ( 6 )  by using equations (2). Then these  are  the 
twelve  linearly  independent  differential  equations in .the  twelve 
reqining independent  degrees of freedom  xfhich  determine  the aim11 
motions  of  the  configuration. Any other  combination of equations (5) 
which  eliminates the parametere & may be  written 8 8  a linear com- 
bination of these  twelve  equations.  The  first  three  equations  give  the 
combined  translational  forces  on  the Bystem, the  next. three equation8 
give  the  rotational  moments  on  the  bomber;  and  the final'six equations 
give  the  rotational  moments on the  fighters. The solution of this se t  
of equations  would  give  the  translational  motion of the  bomber  center of 

.' 

I 

! 

. .  

I 
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gravity and the  rotational motion of - the  bomber and both fighters. The 
tmnslat ional  motion of the  fighters is  of l i t t l e   i n t e re s t ,   bu t  my, of 
course, be obtained fram equation (2) ... . . .  

SY"TRI!ZATIOM O F  EQUATIONS O F  MOTION 

The equations  presented  are n o t  i n  the.proper form to show the 4 

symmetry of the system. The proper form can be-obtained by expressing 
the  f ighter motions and forces in  symmetrical and antisyrmnetrical com- 
ponents. F o r  example, consider  the  rolling  equations of the  fighters. 
me   ro l l i ng  equation of the  left  fighter,  equation (6.8), i s  

c 

- 1  

The rolling  equation of the right fighter,  equation (6.11), is the same 
as equation (7) except that  the  subscript  2-replaces  the  subscript 1, 
-b replaces b,  and -bf replaces  bfj  that is, 
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L 

L 

L 

These  equations -do not 
tain  both  longitudinal 

- tions,  however,  may  be 

show the symmetry of the  system,  since  they  con- 
and lateral  degrees of freedom.  These  two  equa- 
replaced by their sum and their  difference; 

physically,  this  substitution is equivalent to replacing  the  individual 
fighter ro l l lng  moments by the  equivalent  symmetrical and antisymmetrical 
,components of the  combined  fighter  rolling  moments.  The  symmetrical and 
antisymmetrical  fighter rotations may  be  def+ed as follows: 

- 
- Then, one-half the sua of equations (7 )  and ( 8 )  is 

c 

I 
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Also, one-half the  difference of. equations (7) and (8) is 

L J 

I 

.9 

I 

! 
i 

I 

I 
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c 

The variables  occurring  in  equation (11) are  v, Jr, g, ga, e,, 
and qa, m i l e  those  occurring * i n  equation. (12) are u, w, 8, PIB, 

Os, and qS. The se t  of variables  occering in equation (ll) may be 
designated as t he   l a t e ra l  degrees of freedom of  the  ent i re  system  asd 
those  occurring i n  equation (12) may be designated as the l&t&3nal 
degrees of freedom, That is, t he   l a t e ra l  degrees of freedom of  the 
system are   the ordinary l a t e r a l  'mot*ians of the bomber and the  anti- 
symmetrical components o f - t h e  combfned f ighter  motions as defined i n  
equations (10). The longitudfnal  degrees  of. freedom are the  longi- 
tudinal bomber motions  and the symmetrical'components of the  f ighter 
motions as  deftned in equations ( 9 ) .  

If the remaining two pairs  of fighter  equations  (equatipm (6.7)' 
and (6. l o ) ,  and equations . (6.9) and (6.12) ) are  similarly  replaced by 
one-half their sum8 and differences, by making the substitutions  given 
i n  equations ( 9 )  e d  (lo), the same separation of variables  occurs. 
Finally,  using  equations (9) and (10) i n  the six bomber equations com- 
pletes  the  separation of the twelve  equations of the   en t i re  system in to  
s i x   l a t e r a l  equations and six  longitudinal  equ+tions, which are inde- 
pendent of each other. These equations  are  presented in appendix A. 

-The longitudinal and lateral   equations may  now be treated iepa- 
rately. The s t a b i l i t y  of the  longitudinal motions may be  determined by 
the well-known  method of  expanding the  determinant of the longitudinal 
equations and evaluating *he roots of the  resul t ing  character is t ic  
equation. The.same may of course be  done independently f o r  t he   l a t e ra l  
motion. Actual  solutions  my be obtained by any of the well-known 
methods for  solving  sets of l inear  differential   equations,  such  as ,the 
Laplace  transform method, some step-by-step method, or by use of an 
analog  calculator. If the rotational motion of a given f i g h k r  i s  
desired, it is simply necessary t o  use  equations ( 9 )  and (10). For 
example, #z = + ga, and #2 = #a - In order t o  obtain  the indi- 
vidual  f ighter motions, both  the  lateral  and longitudinal  equations 
must be solved, since  these motions contain  both  the  lateral and longi- 
tud ina l  modes  of motion. 

These equations  hold f o r  the m o s t  geneml  type of cokpllng l i ke ly  
t o  be encountered. In practical   cmes m y  simplifications will prob- 
ably  be.possible. For examgle, Z and Zf wfll generally be much 

smaller than and 2, reipectively. Also, f o r  unswept WFngs X 

and.  xp will be much smaller  than 8 bf' - respectiveiy. These 
fac ts  in conjunction  with %he  approximate  magnitudes,of the  familiar 
s tabi l i ty   der ivat ives  of the  individual  airplanes show t ha t  it may be 
possible, in pract ical  cases, t o  ignore many terms in  these  equstions. 

2' 

I 

I 

I 

I 

i 

I 

I 

I 
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Note  that  the  set of lateral  equations  is  eleventh  order  in  the 
time-derivative  operator  and  the  longitudiqal  equations  are  tenth 
order: Also, neither  characteristic  equation  has a zero root in  the 
general  case.  The  solution of these most general  equtttiona  of  motion 
may,  therefore,  be a formidable  task. I n  order  to  determine  the  effect! I 

of  varying  parameters. on the  .motion of the  configuration,  it  would  be 
necessary  to  use =-analog computer.  The  fighter  rotational  motions 
must  be  restricted  in  order  to  reduce  the  differential  order  of  the 
problem. . .  

CONSIDERATION OF STEADY-STATE FIGHTER DEFLEXTIOPJS 

In deGiving  the  equations of motion  it was assumed  that  there  were 
no steady-state egles between  the  airplanes  in  the  steady-state  con- 
dition. . I n a B m u c h  as  auch  angles may exist,  their  effect  ia now - 
considered. 

In the  practical  case,  it  seems  reasonable  to  assume  that  the 
yawing  moment  of  the  fighters  due  to  their  drag wlll be  trimmed  out so 
that  the  steady-state.  fighter y a w  augles  vanish.  Since the X-axis  is 
arbi'trarily chosen-along the  initial  flight  path,  the  initial  pitch 
angle  also vanishes:. The-remaining angle  which may be  considered  is a 
possible  angle  of stew-state 'tdroop'' of  the  fighter  wings. 

I n  the following  analysis, 70 is  assumed  to  be  zero;  then  the 
steady-state roll angles  are  determined  by  the following equations of 
trim  for  side  force,  vertical  force, and fighter  roll'about  the  lef't . 
and  right-  coupling  joints,  respectively: 

L' - w + L'f~cos(gl)o + cos($2),/ - 2wf = 0 

bf 2 L I f  - Wf -cos(pi2)o] = 0 c I 



I 

I 

the obvious condition  that 
Let  (#2)0 ' I  

and the   l a s t  two equations  are  identical. The remaining conditions  then 
a re  

These equations 
on each f igh ter  

L t f  = Wf cos #o 

I 

L t  = w. + 2wf (1 - c0s2go) (14) 
, I  

! 

show that  the  configuration  my be trimmed with the lift 
not  sufficient t o  support i t s  awn weight, in which case 

- t  
I the trim angle of droop will be 9, = cos'' L' f. Equation ( 14)- also 

. W F  
shows that   the  bomber lift w & l l  have t o  be correspondingly  increased t o  
carry  the unbalanced  weight. 

Note that   the  trim equations  are  satisfied f o r  negative droop also, 
since go appears only in the  cosine  function. This fac t  inlplies that 
there- is a trim condition with the ' f igh ter  wings poised above the bomber 
wfng level.' However, a simple consideration of the  effect  of slight 
variations of f igh ter  l i f t  o r  r o l l  angle on the   f ighter   rol l ing moment 
about the  hinge shows that the 'upper trim position is s t a t i c a l l y  
unstable,  the $do = 0 position is  a position of neutral  equilibirum, 
and the  lower t r i m  p.ositi,on is s ta t ica l ly   s tab le .  It might therefore 
be desirable t o  allow the  f ighter  wings to droqp somewhat if the bomber 
wings are capable of sustaining  the  additional  steady-state  load. It 
should  be  noted that   the  aerodynamic Interference  effects have been 
i@ored in this discussion. These effects  might make positions of hega- 
t ive  droop stable. 

The case of steady-state f i a t e r   r o l l - a n g l e s ,  such as have just 
been described, may be handled by making the  appropriate change in  q u a -  

(2.6). Equation (1) now implies, -en 

I 

! 

i 

I 

- .  

I' I 



v + V0$ + x+ - $ = (v2 + vo*2 + XfG2 - z$2)cos go - 

(w2 - voe2 - bf - 2 i, - xfe2 ' )  a h  go 

These equations  give  the  modified  equations of condition and replace 
equations (2.2), (2.3), (2.5), and (2.6) as follows: 

I 

I 
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It is  easily  seen  that  these  conditions xLll not  destroy  the  symmetry 
properties of the final eqwtions of motton.  Actually,  the most logical 
way to  derive  the  equations of motion in symmetrical  form  would be to 
use  the  equations of condition in symmetrical form ( s u i  and difference 
equations,  with  symmetrical  and  antisymmetrical  fighter  variables); 
together with the  independent  fighter  equations in symmetrical form 
replacing  the  usual  independent  fighter  equations  given: in equations ( 5 ) .  
This method was not  used:  only  because  it was not  desired to confuse 
unnecessarily  the  discussion of the  application of Lagrange's  method by 
introducing  questions of symmetry. 

It can  be  seen  that va and .wa, which wifl enter  into  the  lateral 
equations of motion, +contain only lateral  variables,  whereas wa and 
vs, wbich  enter only into  the  longitudinal  equations,  contain only 
longitudinal  variables.  Therefore,  the symmetry properties of m e  flnal 
equations  are  preserved  even  when  steady-state  roll.angles are assumed. 
Physically it is clear  that any steady-state  angles which preserve  the 
symmetry of the  steady-state  configuration will give  rise to separable 
lateral and longitudinal  equations. 

! 

I 

I 

I 

I 
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SIMPLIFIED EQUATIONS FOR MORE RFSTRICTED COUPLING 

Some of the  possible simp1if"Lcatians of the  gene'ral  equations of 
motion given i n  appendix A have already been mentioned. For example, 
if a n y '  of the  coupling-joint  position components-. (X, Z, ~ f ,  and Zf )  
should vanish, m y  terms in  the  general  equations would not  appear. A 
more  fundamental simplification is  that i n  which the  rotation at the ' 

coupling joints  i s  restricted  to  less  than  three  degrees of freedom. 
In such cases  additional  equations of cmdit ian may be imposed; two of 
the variables  are  thereby  eliminated  for each r e s t r i c t ion   i n  a com- 
p e e &  -of the  rotational motion. Thus, the number of equations and the 
differential   order of the equations of motion which  must f inal ly  be 
solved are reduced. 

c If the Flghters are restricted,  by the  design of the coupling, ' t o  
rotate  about  only one or  two.ax&s instead of being  completely f'ree t o  
rotate,  then  the Iequations of condition will gene-rally  involve  the 
direction  cosines of the  hinge axes with respect- to  the  steady-state 
axes. The method  of treating  these  cases may best be i l lus t ra ted  by 
carrying  out  the  case  for  rotation  about one axis only, corresponding 
t o  an ord ina ry  hinge  coupling. 

The ueual  practical  type of coupling is a hinge  type of connection, 
the  axis of which is pa ra l l e l   t o   t he  symmetry plane of the bomber. If 
the  hinge  axis i s  parallel to   the  XZ-plane, .the f ighters  and bomber are 
r igidly connected in  pttch,  d two  additional  equations of condition 
m y  immediately be written as 

e2 = e 

Now i f  the X-axes in  the  individual  airplanes may be chosen such t ha t  
the  hinge  axis,. i s  in the  direction common to  the  steady-state X-axes, 
then  the  additLona1 two equa%ions of res t r ic t ion   a re  simply 
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In general,  such  ‘a  choice of the  steady-state  X-axes would only  be 
permissible  if b d y  axes  were used instead of stability  axes. . In this 
case  the.  original  equations  of  motion  represented by Ei in equation (3)  
would  have to be written  in te& of b d y  axes.  However,  if  stability 
axes  are to be  used in setting up the  uncoupled  equations  of  motion, as 
has been  done  in  equations (3) ,  then  the  direction  of  the  steady-state 
X-axes  must be along  the  steady-state  velocity. If the  hinge  axLs is 
assumed to  be  fixed in the  bomber o r  in the  ff&ter wings, some steady- 
state  angle will generally  eldst  between  the hinge-axis and the  velocity 
direction.  This  angle will be  called yo aud is assumed  positive  &en 
the  hinge  is  pitched  above  the  velocity in  the  steady  state.  Let  the 
disturbance  deflection of the fighter  about  the  hinge  axis  be called u 
and be taken  positive in the-same direction as positive  roll.  Since  the 
disturbance  angles  are small they  may  be  treated  as  vectors, and. the 
components of cf along  the  steady-state X- and Z-axes  are #f - $ and 
lrf - q, respectively.  Therefore, 

I 

Thus the  equations  of  condition  corresponding  to  equations (17.3) and 
(17.4) are 

In this  case  the  hinge  has  been  assumed to lie  parallel  to  the 
=-plane. By usFng  equations (17) the  four  variables Bf and qf m y  
be  eliminated. In the  most  gerieral  case of hinge  coupling,  the  hinge 

I 

I 

i 

I 



I 

a jds  w i l l  not  necessarily be perpendicular t o   t he  Y-axis, bu t  will make . 
certain  st,eady-state  angles with a l l  the  axes.  Let  these  angles be ql, 
q2, and q3 with  respect to   the  ,X-, Y-, and Z-axis, respectively. Then 
by prdceeding  exactly as before,  equations (17) become 

cos q 
= e + (% - %os q, 

2 (18.1) 

(18.2) 

(18.4) 

These are  the  general  equations of condition which must be used along 
with  equations (2) i n  applying Lagrange’s method f o r  hinge  coupling xben 
the  hinge is  skewed with  respect t o  the symmetry plane. 

In  order  to  illustrate  the  mcdifications  intrcduced by the  addi- 
tional  conditions,  the  simplest  conditions,  represented by  equa- 
tions (17. l) t o  (17.4), will be considered. By proceeding as before, 

. the  additional  equations  corresponding t o  equations (4) are  

I 

.. 
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. These conditions  introduce  the  follaring  additional terms into 
equations ( 5 ) :  (x9 + hro) in equation  (5.2), (x7 + ha) TIL equa- 
t ion (5.61, -$ in equation.  (5.8), -X7 in equation (5.12), -Al0 
in equation (5.14), and -X8 in equation  (5.18).  Six of the  equations 

’ of  motion given in  eqkation (6) wfll not  be changed and will therefore 
s t i l l  be val id   in  this case. These are  equations (6.11, (6.~9, (6 .3) ,  
( 6 . 3 ) ,  (6.8), and (fiil) which are  the translational equations and r o l l  
equations. The substitu*ions given by equations (17) make it posstble 
t o  eliminate f o u r  more variables, 80. t ha t  only eight  variables remafn. 
Therefore, when equations (17) a re  used in  the  six  equations which 
remain unchanged, only two  additional independent equations are needed. 
In fact ,  only two  more l inear ly  independent  combinatione of equations (5) 
which eliminate  the Xk are possible. In .order t o  eliminate  the addi- 
t iona l  & introduced,  the  simplest combinations of .equations would 
seem t o  be - 

The equations of motion may now be symmetrized exactly as before. 
The .nondimensional variable0 u* ,- p,  and a are used Fn place of u, 
v, and w, respectively. Then, for the ca6e of .hinge  coupling with the 
hinge axis  along  the-steady-state X - a x i s ,  i f ,  ft is  also assumed that 

equations of l a t e r a l  motion are  

- x = z . =  Xf = Z f , =  0 in  order t o  obtain the  simplest  possible  case,  the 

(m + *)V0i - 4f (w + 2iJf)sin T o  - 

I 

I 
! 

I 
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(21.4) 

. and the equationa of longitudinal motion are 

! 

(21.8) 
- .  
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It might be noted that the  equations of motion i n  this case could 
a -have  been.  obtained d i rec t ly  from the  general  case  given in equations ( 6 )  

by simply  adding the  three  pitch  equations and the  three yaw equations 
and using $ = % = $f2 and 8 = €I1 = 82 t o  obtain  equations (20.1) 
and.(20.2). The reason for  ;this i s  that  the  constraints in .this case 
are  the same 4s in  the  general  case  except that two  additionai con- 
straints are  added. The method of  introducing  the  additional & was 
used i n  order t o  show  how the more geneml  constraints (such as given 
in equations (18)) might be handled. Also, i f  the  general  equations 
are  not known, it is  always more convenient t o  introduce a l l  the con- 
straints a s  done here,  rather  than  first  deriving  the  general  equations. 

i 

I 

The system described by equations  (21) is probably  the  simplest 
'wing-tip-coupled'system. The l a t e r a l  equations can be seen t o  have a 
seventh-order characterist ic equation,  but,  since  there  are two zero 
roots,  the problem is  e s sen t i a l ly   f i f t h  order. The longitudinal motion 
has a sixth-order  characteristic  equation  with one zero r o o t  and i s  

. therefore  also  essentially of f i f t h  order. 

Clearly,  there are many possible cases which are  less  general  than 
that described by the  general  equations i n  appendix A but  more general 
than  that  described by equations  (21). It i s  hoped that the  discussion : 
of the  modifications  introduced by additional  constraints has mde  clear I 

the methods for obtaining  the  equations of  mot-ion f o r  these  intermediate 
cases. 

. .  
I 

. I  

NONDIMEl?SIOMALIZATION OF. EQUATIONS OF M&ON I 
I 

The equations of motion may be nondimensionalized in several ways. 
The use of a method  which brings  in  the  conventional  stability  deriva- 
tives  of.the  separate  airplanes would be desirable, however. One such 
method wi l l  be i l l u s t r a t ed  by applying it t o  equations (21). 

I 
I 

. . In order t o  nondimensionalize the  lateral-equations,  equation (21.1) I 
i s  divided by qS, equations (21.2) and (21.3) are  divided by qSb, and 
equation (21.4) is divided by qSfbf. Then, the following substitution8 

- Sf bf ' are  made:- AI = A3 E s, Ab E b, and, f o r  the 

nondimensional time-derivative  operator, % E- - me result ing 
equations are 

v, at' 

I 

I 
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(22.2) 
I 

i 



In order t o  nondinlensionalize the  longitudinal equazions, equa- 
t i on  (2 l .5 )  is divided by qSc, equations (21.6) and (21.7) are  divided 
by qS, and equation  (21.8) i s  divid'ed by qSfcf. Then, the following 

(CmuI + 2B1CRlf)uf - (*,C% + B1B4C%; D C a  .- 1 

I 
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C OEJSIDEXATION 

c 

Because of the aerodynamic interference between adjacent wings, it 
i s  clear  that   the.pressure  distributions  arising From given motions will 
be mcdified. Probably the-most  important  interference  effects  are  the 
changes i n  the   l i f t   d i s t r ibu t ion   resu l t ing  from an angle of attack or, 
rolling  velocity. From referencea 1 and 2 it. can be seen  that, in addi- 
t i o n   t o  modifications of the ordinary stability derivatives,  certain 
unusual stabil i ty  derivatives  are introduced. These derivatives  arise 
because the lift distribution  result ing from the motion of a given wing 
does. not  vanish a t   t h e  wing t ip,   but--"spil ls" over  onto  the  adjacent 
wing. This phenomenon gives r i s e   t o  two imgortant- dynamic effects.  
First,  there  are  forces on a given  airplane  arising from motions of the 
adjacent one,  and, second, there  are coupling  forces between the lateral 
and longitudinal males o f  the fighters. The second ef fec t .a r i ses  from - 
the asymmetry of the lift on the  fighters. For example,  a  change in 
angle of attack on the  f ighter wing +uses a larger change in   the lift 
on the  inboard wing than on the outboard wing, because of the  inter-  
ferenke  effect  of.  the  adjacent bomber  wing. Therefore a rol l ing moment 
is produced. 

The purpose  .of this  section is not to  evaluate  these  interference 
effects, but simply t o  show haw they may be brought into  the  equations 
of motion when they have been determined by some theoretical  or  experi- 
mental method. In  general, it- can  be  seen that  the  three  types of 
interference which  have been mentioned in  the  discussion of angle-of- 
attack and rolling-velocity  effects (namely, modifications of the  ordi- 
nary stability  derivatives,  cross  derivatives between the bomber and 
fighters, and cross  derivatives between the  f ighter   la teral  and longi- 
tudinal modes) are, dynamically, the only types which can  occur even in I ,  

the most general  disturbance mo%ions. Therefore,  the  rolling-velocity 
and angle-of-attack.interference effects  will be considered in   de t a i l ,  
and, i f  any other  interference  effects should turn  out   to  be important, 
they may be t reated  in  a similar manner. I 

I .  
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For this  discussion the modifications  of  the.iral.ues of.the ord i -  
L nary stability  derivatives  are  unimportant,  since  they may be  taken 

care  of  by  simply  replacing  the o r d i n a r y  dgrivatives by their  modified 
values. The types  of.unusual  stability  derivatives w i l l  be  distin- . 
guished  by  use, of parentheses.  For  example,  the  bomber  rolling  moment 
Bue  to  unit  change of fighter angle of attack will be  written. (L) 9' 
the fighter rolling mment due to unit bomber  angle  of  attack will be 
written (Lf),, and the  fighter  rolling moment due  to unft angle o.f 
attack of the same fighter MIL be written (b) 

f* 

.The  unusual  stability  derivatives  arising  from  fighter  angle of 
attack are . (&)f; (Z),f, and (L)af. I Because  of the symmetry,  the 
following  definitions may be made: 

Similarly,  for  the  stability  derivatives  associated  with a bomber 
angle of attack,  the.following  defFnitions my be  used: 

Far  fighter  rolling-velocity  derivatives 

. 

I 
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Finally,  for  bomber  rolling-velocity  derivatives, 

The  forces  associated  with  these  derivatives  may now be treated 
exactly as the  ordinary  aerodynamic  .forces  were.  These  are  simply . 
additions-1 applied  forces  and may be  conaidered  in  equation ( 3 ) ,  in  the 

. proper  equations of equations ( 5 ) ,  or in  the  final  combined  equations 
' of.motian.  The  terms  mentioned  in  equations (23) to (32) enter  into 

equations (5.31,  '(5.51, (5 .9) ,  (5-U), (5.15), and (5.17)- Now suppose 
- that  it  is  desired  to find the  additional  terms in the  final  equations 
of  motion  arising  from  these  unconventional  stability  derivatives.  For 
simplicity,  assume  the  system  is of  the  type  'described  by  equations (21). 
In this  case  the only final  e&atiana.which  are---affected  are  equa- 
tions (21.3), (21. k ) ,  (21.7), and (21.8). 

In equation (21.3), the  aerodynamic  interaction  forces  which  must 
be  considered  may  be added to  the  right-hand  side  of the equation &a 
additional  applied  forces.  These  additional t e n  are  obtained with 
the  use of equations (25), (26), (a), (30), and (31) and are  as 
fOllCWS: 

(Z$&(& + $2) + (Zf)& + (Zp)$id] 
.~ 

These  terma  have  been  wri.tten  out in detail  to  make  clear  the  method  of 
obtaining  the  additional  terms.  By  the  use of the  equations  of 
tion  for  this  case, "1 and 5 may be  eliminated  as follows: 

codi- 

I 
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and 

The additional terms t o  be added t o  the  left-hand  side of eqmtion (21.3). 
are obtained by changing the- sigus of the  previously  derived  additional 
applied  forces and using equation (34) : 

A simiiar  procees  yieIds  the  ,correction terms fo r  the  other  three 
modifled equations. When the  proper  collection. of terms ;s made, the 
additional terms from the rolling-velocity and angle-of-attack aero- 
dynamic interference  forces on the system  described by equations . (21) , 
are  

In  practice,   if   the aerodyngmic interference  forces had .been Imam, 
they would have been included i n  equation  (3) as &erodynamic forces Fn 
the Ei associated  with  each'degree of fl-eedo?,. Therefore,  they.would 
have appeard  in the final equations  in-  the.  proper. f.orm. This more 
logical ,procedure w&s not  followed f o r  two reasons:, . Fi r s t ,  no attempt 
has been de t o  determine a l l  the  interference  forces.which might be . 
important,  since th i s  paper i s  prir&rily concerned with  the dynamic 
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rather  then  the  aerodynamic  effects  of  wing-tip  coupling.  Second,  the 
consideration  of  aerodynamic  interference  in  the  midst  of  the  expla- 
nation of .the  dynamic  effects  would  tend to confuse this explanation. * 

The  additional  terms in equations (21.31), (21.4'), ( z L . ~ ' ) ,  and 
(21.8') show  that  the  aerodynamic  interference  terms  do  not  destroy  the 
symmetry  of  the  final  equations  of  the  total  system,  since  it will be 
noticed  that  the  additions  to  the  lateral  equations (21.3) and (21.4) 
contain  only  lateral  degrees  of  freedom and the  additions to.the longi- 
tudinal  equations (21.7) and (21.8) contain  only  longitudinal  variables. 
The physical  reason  for  this  is  as  follows:  Although  the  aerodynamic 
interference-causes  unsymmetrical  pressure  distributions  on  the  fighters, 
yet  with  respect to the  plane  of  symmetry  of  the  total  system  (that  is, 
the  bomber  plane  of  symmetiy)  these  pressure  distributions  are symmet- 
rical  for  symmetrical  motions and antisymmetrical f o r  antisymmetrical 
motions. . .  . .. . 

CONCLUDJ3TG 

A method  has been presented. for deriving  the  equations  of  motion 
for'the small disturbance  motions  of a symmetrical  configuratipn of wing- 
tip-coupled  airplanes.  Lagrange's  method  of-undetermined  multipliers 
was used  to  take  account of the  dynamic  effects  of  the  constraints  at 
the wing tips cm the  equations  of  motion  for small disturbances  of  the 
unconstrained  system oFaiqdsaes. 

By this method,  the  equations of motion  of a wing-tip-coupled 
system w i t h  three  degrees 0.f rotational  freedom  at  each  coupling  joint 
were  derived  with  the  assumption  of no steady-state  trim  angles  .between 
the  fighters and the  bomber  and  with  the  ef'f'ects  of  aerodynamic  inter- 

twelve  equations in twelve unlmowns, which are necessary  to  describe 
this  general  system, may be  separated  into  mutually  independent  lateral 
and  longitudinal  modes  consisting  of six equations  each.  The lateral 
equations  are  eleventh oder in  the  time-derivative  operator and the 
longitudinal  equations  are  tenth  order.  The  equations  show  the  impor- 
tance  of  the  position of the  coupling joint-in determining  the  8tability 
derivatives  of  the  combined  system. The simple  modificitions caused. by 
steady-state  fighter  deflections  were  also  pointed.  out. 

. ference  between  the airplanes being neglected. It WBE shown  that  the 

I 

- ;  

I 

The  effects  of  restricting  the  rotational  motion  at  the  coupling 
joints  were  then  considered, and it was sham how the  equations  of  motion I 
could be derived  for  these  cases  with  fewer  degrees of freedom.  The - 

importasce of the.effects .of-the orientation of the  rotation  axes on the 
equations  of  condition'h  these more restricted  cases was pointed  out. 
The  equations  of  motion were then  derived  for  the  simplest  case  of  hinge . - 



NACA RM L51G12 37 
- 

coupling  with  the  hinge &xis parallel to the  steady-state  X-axis  and 
the  position of the  hinges  lying on the  common  steady-state  Y-axis. of 

c . the  airplanes.  For  this  simplest  case,  the  solution of either  the 
.lateral or  longitudinal  equations was s h m  to  be a sixth-.order.problem. 
A convenient  method for nondimensionalizing  the  equations  of  motion was 
illustrated  by  applying  it  to  these' equations. 

Finally,  it waa shown  that  the  aerodynamic  interference  forces 
could  be  treated'in  the same manner &a the  ordinary aer&ynamic forces 
and would  introduce no Fundamental  difficulties. 

Since  the  type  of  coupling wlth complete  rotationa1.freedom would 
be  most  desirable from the  point of view of decreasing  the  strains on 

bility of this  case  by  use  of analog computers. In order  to  obtain 
accurate  results  the  aerodynamic  interference  forces  would  first  have 
to be  evaluated  by some theoretical or experimental means. Since  the 
equations of motion are known, the  computing  machines could then  be ' 

ueed to  evaluate  the  effects  of'varying  significant parametere, such 
a8 the  positions of the  coupling joints, on the stability of the 

. the Ging structures,  it  would  seem  advisable to investigate  the  sta- 
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GENERAL EQUATIONS OF MOTION OF A SYMMETRICAL WIMG-TIP-CCKJFLED 

CONFIGURATION O F  AIFEUKES W I T H  COMPLl3TE ROTATIONAL 

FREEDOM AT TBE COUPLING JOINTS 

The  lateral  equationa of motion  are obtained  as follows by making 
the  conventional  transformation to nondimensional  translational  veloci- 
ties;  that is, ut A, fl = x, and, a E - w' where a and p are, 

to first  order, the disturbance  angle of attack and angle of sideslip, 
respectively: 

VO vo VO' 
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The longitudinal  equations for thfa general case are 
8 

M + XFz - ZFx 
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Figme 1.- Stab i l i t y  axes. The motion of each individual  airplane is  
given QI terms of s t a b i l i t y  axes i n  t h a t  &"plane. Arrows indicate 
positive  direction. 
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